Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38425314

RESUMO

Anti-IgLON5 disease is a rare and likely underdiagnosed subtype of autoimmune encephalitis. The disease displays a heterogeneous phenotype that includes sleep, movement, and bulbar-associated dysfunction. Presence of IgLON5-antibodies in CSF/serum, together with a strong association with HLA-DRB1*10:01∼DQB1*05:01, support an autoimmune basis. In this study, a multicentric HLA study of 87 anti-IgLON5 patients revealed a stronger association with HLA-DQ than HLA-DR. Specifically, we identified a predisposing rank-wise association with HLA-DQA1*01:05∼DQB1*05:01, HLA-DQA1*01:01∼DQB1*05:01 and HLA-DQA1*01:04∼DQB1*05:03 in 85% of patients. HLA sequences and binding cores for these three DQ heterodimers were similar, unlike those of linked DRB1 alleles, supporting a causal link to HLA-DQ. This association was further reflected in an increasingly later age of onset across each genotype group, with a delay of up to 11 years, while HLA-DQ-dosage dependent effects were also suggested by reduced risk in the presence of non-predisposing DQ1 alleles. The functional relevance of the observed HLA-DQ molecules was studied with competition binding assays. These proof-of-concept experiments revealed preferential binding of IgLON5 in a post-translationally modified, but not native, state to all three risk-associated HLA-DQ receptors. Further, a deamidated peptide from the Ig2-domain of IgLON5 activated T cells in two patients, compared to one control carrying HLA-DQA1*01:05∼DQB1*05:01. Taken together, these data support a HLA-DQ-mediated T cell response to IgLON5 as a potentially key step in the initiation of autoimmunity in this disease.

2.
Blood ; 141(14): 1755-1767, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36574344

RESUMO

CD4+FOXP3+ regulatory T cells (Tregs) have demonstrated efficacy in the prevention and treatment of graft-versus-host disease (GVHD). Preclinical and clinical studies indicate that Tregs are able to protect from GVHD without interfering with the graft-versus-tumor (GVT) effect of hematopoietic cell transplantation (HCT), although the underlying molecular mechanisms are largely unknown. To elucidate Treg suppressive function during in vivo suppression of acute GVHD, we performed paired T-cell receptor (TCRα and ΤCRß genes) repertoire sequencing and RNA sequencing analysis on conventional T cells (Tcons) and Tregs before and after transplantation in a major histocompatibility complex -mismatched mouse model of HCT. We show that both Tregs and Tcons underwent clonal restriction, and Tregs did not interfere with the activation of alloreactive Tcon clones and the breadth of their TCR repertoire but markedly suppressed their expansion. Transcriptomic analysis revealed that Tregs predominantly affected the transcriptome of CD4 Tcons and, to a lesser extent, that of CD8 Tcons, thus modulating the transcription of genes encoding pro- and anti-inflammatory molecules as well as enzymes involved in metabolic processes, inducing a switch from glycolysis to oxidative phosphorylation. Finally, Tregs did not interfere with the induction of gene sets involved in the GVT effect. Our results shed light onto the mechanisms of acute GVHD suppression by Tregs and will support the clinical translation of this immunoregulatory approach.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Linfócitos T Reguladores/patologia , Transcriptoma , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/patologia , Proteínas/genética
3.
J Cardiovasc Transl Res ; 16(2): 287-299, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36121621

RESUMO

Chronic ventricular pacing can lead to pacing-induced cardiomyopathy (PICM). Clinical data alone is insufficient to predict who will develop PICM. Our study aimed to evaluate the circulating miR profile associated with chronic right ventricular pacing in children with congenital complete AV block (CCAVB) and to identify candidate miRs for longitudinal monitoring. Clinical data and blood were collected from chronically paced children (N = 9) and compared with non-paced controls (N = 13). miR microarrays from the buffy coat revealed 488 differentially regulated miRs between groups. Pathway analysis predicted both adaptive and maladaptive miR signaling associated with chronic pacing despite preserved ventricular function. Greater profibrotic signaling (miRs-92a, 130, 27, 29) and sodium and calcium channel dysregulation (let-7) were seen in those paced > 10 years with the most dyregulation seen in a patient with sudden death vs. those paced < 10 years. These miRs may help to identify early adverse remodeling in this population.


Assuntos
Bloqueio Atrioventricular , Cardiomiopatias , MicroRNAs , Humanos , Criança , Bloqueio Atrioventricular/terapia , Projetos Piloto , Estimulação Cardíaca Artificial
4.
Science ; 376(6590): eabi9591, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35258337

RESUMO

In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.


Assuntos
Doenças Autoimunes , COVID-19 , Animais , Linfócitos T CD8-Positivos , Humanos , Camundongos , Receptores KIR , Linfócitos T Reguladores
5.
Sci Transl Med ; 14(635): eabm7853, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35040666

RESUMO

A damaging inflammatory response is implicated in the pathogenesis of severe coronavirus disease 2019 (COVID-19), but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated immunoglobulin G (IgG) antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were associated with progression from mild to more severe COVID-19. To study the biology of afucosylated IgG immune complexes, we developed an in vivo model that revealed that human IgG-Fc-gamma receptor (FcγR) interactions could regulate inflammation in the lung. Afucosylated IgG immune complexes isolated from patients with COVID-19 induced inflammatory cytokine production and robust infiltration of the lung by immune cells. In contrast to the antibody structures that were associated with disease progression, antibodies that were elicited by messenger RNA SARS-CoV-2 vaccines were highly fucosylated and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. Vaccine-elicited IgG did not promote an inflammatory lung response. These results show that human IgG-FcγR interactions regulate inflammation in the lung and define distinct lung activities mediated by the IgG that are associated with protection against, or progression to, severe COVID-19.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacinas contra COVID-19 , Humanos , Estudos Prospectivos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
Sci Transl Med ; 13(617): eabf5264, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34705520

RESUMO

Type 1 regulatory T (Tr1) cells are inducible, interleukin (IL)-10+FOXP3− regulatory T cells that can suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have optimized an in vitro protocol to generate a Tr1-enriched cell product called T-allo10, which is undergoing clinical evaluation in patients with hematological malignancies receiving a human leukocyte antigen (HLA)­mismatched allo-HSCT. Donor-derived T-allo10 cells are specific for host alloantigens, are anergic, and mediate alloantigen-specific suppression. In this study, we determined the mechanism of action of T-allo10 cells and evaluated survival of adoptively transferred Tr1 cells in patients. We showed that Tr1 cells, in contrast to the non-Tr1 population, displayed a restricted T cell receptor (TCR) repertoire, indicating alloantigen-induced clonal expansion. Tr1 cells also had a distinct transcriptome, including high expression of cytotoxic T lymphocyte­associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Blockade of CTLA-4 or PD-1/PD-L1 abrogated T-allo10­mediated suppression, confirming that these proteins, in addition to IL-10, play key roles in Tr1-suppressive function and that Tr1 cells represent the active component of the T-allo10 product. Furthermore, T-allo10­derived Tr1 cells were detectable in the peripheral blood of HSCT patients up to 1 year after T-allo10 transfer. Collectively, we revealed a distinct molecular phenotype, mechanisms of action, and in vivo persistence of alloantigen-specific Tr1 cells. These results further characterize Tr1 cell biology and provide essential knowledge for the design and tracking of Tr1-based cell therapies.


Assuntos
Isoantígenos , Receptor de Morte Celular Programada 1 , Linfócitos T CD4-Positivos , Antígeno CTLA-4 , Humanos , Linfócitos T Reguladores
7.
Clin Cancer Res ; 27(21): 6054-6064, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34376537

RESUMO

PURPOSE: The development of allogeneic chimeric antigen receptor (CAR) T-cell therapies for off-the-shelf use is a major goal that faces two main immunologic challenges, namely the risk of graft-versus-host disease (GvHD) induction by the transferred cells and the rejection by the host immune system limiting their persistence. In this work we assessed the direct and indirect antitumor effect of allogeneic CAR-engineered invariant natural killer T (iNKT) cells, a cell population without GvHD-induction potential that displays immunomodulatory properties. EXPERIMENTAL DESIGN: After assessing murine CAR iNKT cells direct antitumor effects in vitro and in vivo, we employed an immunocompetent mouse model of B-cell lymphoma to assess the interaction between allogeneic CAR iNKT cells and endogenous immune cells. RESULTS: We demonstrate that allogeneic CAR iNKT cells exerted potent direct and indirect antitumor activity when administered across major MHC barriers by inducing tumor-specific antitumor immunity through host CD8 T-cell cross-priming. CONCLUSIONS: In addition to their known direct cytotoxic effect, allogeneic CAR iNKT cells induce host CD8 T-cell antitumor responses, resulting in a potent antitumor effect lasting longer than the physical persistence of the allogeneic cells. The utilization of off-the-shelf allogeneic CAR iNKT cells could meet significant unmet needs in the clinic.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada , Imunoterapia Adotiva/métodos , Células T Matadoras Naturais , Neoplasias/genética , Neoplasias/terapia , Células Alógenas , Animais , Camundongos
8.
Blood Adv ; 5(17): 3290-3302, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34432869

RESUMO

Replacement of failed organs followed by safe withdrawal of immunosuppressive drugs has long been the goal of organ transplantation. We studied changes in the balance of T cells and myeloid cells in the blood of HLA-matched and -mismatched patients given living donor kidney transplants followed by total lymphoid irradiation, anti-thymocyte globulin conditioning, and donor hematopoietic cell transplant to induce mixed chimerism and immune tolerance. The clinical trials were based on a conditioning regimen used to establish mixed chimerism and tolerance in mice. In preclinical murine studies, there was a profound depletion of T cells and an increase in immunosuppressive polymorphonuclear (pmn) myeloid-derived suppressor cells (MDSCs) in the spleen and blood following transplant. Selective depletion of pmn MDSCs in mice abrogated mixed chimerism and tolerance. In our clinical trials, patients given an analogous tolerance conditioning regimen developed similar changes, including profound depletion of T cells and a marked increase in MDSCs in blood posttransplant. Posttransplant pmn MDSCs transiently increased expression of lectin-type oxidized LDL receptor-1, a marker of immunosuppression, and production of the T-cell inhibitor arginase-1. These posttransplant pmn MDSCs suppressed the activation, proliferation, and inflammatory cytokine secretion of autologous T-cell receptor microbead-stimulated pretransplant T cells when cocultured in vitro. In conclusion, we elucidated changes in receptors and function of immunosuppressive myeloid cells in patients enrolled in the tolerance protocol that were nearly identical to those of MDSCs required for tolerance in mice. These trials were registered at www.clinicaltrials.gov as #NCT00319657 and #NCT01165762.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Animais , Ensaios Clínicos como Assunto , Humanos , Tolerância Imunológica , Camundongos , Células Mieloides , Transplantados , Condicionamento Pré-Transplante
9.
Front Immunol ; 12: 661551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122420

RESUMO

Immune function is altered with increasing age. Infection with cytomegalovirus (CMV) accelerates age-related immunological changes resulting in expanded oligoclonal memory CD8 T cell populations with impaired proliferation, signaling, and cytokine production. As a consequence, elderly CMV seropositive (CMV+) individuals have increased mortality and impaired responses to other infections in comparison to seronegative (CMV-) individuals of the same age. CMV is also a significant complication after organ transplantation, and recent studies have shown that CMV-associated expansion of memory T cells is accelerated after transplantation. Thus, we investigated whether immune aging is accelerated post-transplant, using a combination of telomere length, flow cytometry phenotyping, and single cell RNA sequencing. Telomere length decreased slightly in the first year after transplantation in a subset of both CMV+ and CMV- recipients with a strong concordance between CD57+ cells and short telomeres. Phenotypically aged cells increased post-transplant specifically in CMV+ recipients, and clonally expanded T cells were enriched for terminally differentiated cells post-transplant. Overall, these findings demonstrate a pattern of accelerated aging of the CD8 T cell compartment in CMV+ transplant recipients.


Assuntos
Envelhecimento/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Transplante de Coração , Transplante de Rim , Adulto , Idoso , Envelhecimento/genética , Antígenos CD57/imunologia , Antígenos CD57/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Feminino , Citometria de Fluxo/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Telômero/genética , Telômero/imunologia , Homeostase do Telômero/genética , Homeostase do Telômero/imunologia
10.
bioRxiv ; 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34075376

RESUMO

A damaging inflammatory response is strongly implicated in the pathogenesis of severe COVID-19 but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated, anti-SARS-CoV-2 IgG predicted progression from mild, to more severe COVID-19. In contrast to the antibody structures that predicted disease progression, antibodies that were elicited by mRNA SARS-CoV-2 vaccines were low in Fc afucosylation and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. To study the biology afucosylated IgG immune complexes, we developed an in vivo model which revealed that human IgG-FcγR interactions can regulate inflammation in the lung. Afucosylated IgG immune complexes induced inflammatory cytokine production and robust infiltration of the lung by immune cells. By contrast, vaccine elicited IgG did not promote an inflammatory lung response. Here, we show that IgG-FcγR interactions can regulate inflammation in the lung and define distinct lung activities associated with the IgG that predict severe COVID-19 and protection against SARS-CoV-2. ONE SENTENCE SUMMARY: Divergent early antibody responses predict COVID-19 disease trajectory and mRNA vaccine response and are functionally distinct in vivo .

11.
bioRxiv ; 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-34981055

RESUMO

Previous reports show that Ly49 + CD8 + T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8 + T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR + CD8 + T cells can efficiently eliminate pathogenic gliadin-specific CD4 + T cells from Celiac disease (CeD) patients' leukocytes in vitro . Furthermore, we observe elevated levels of KIR + CD8 + T cells, but not CD4 + regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR + CD8 + T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8 + T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells. ONE-SENTENCE SUMMARY: Here we identified KIR + CD8 + T cells as a regulatory CD8 + T cell subset in humans that suppresses self-reactive or otherwise pathogenic CD4 + T cells.

12.
PLoS One ; 15(11): e0241476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33175850

RESUMO

INTRODUCTION: The adult congenital heart disease population with repaired tetralogy of Fallot (TOF) is subject to chronic volume and pressure loading leading to a 40% probability of right ventricular (RV) failure by the 3rd decade of life. We sought to identify a non-invasive signature of adverse RV remodeling using peripheral blood microRNA (miRNA) profiling to better understand the mechanisms of RV failure. METHODS: Demographic, clinical data, and blood samples were collected from adults with repaired TOF (N = 20). RNA was isolated from the buffy coat of peripheral blood and whole genome miRNA expression was profiled using Agilent's global miRNA microarray platform. Fold change, pathway analysis, and unbiased hierarchical clustering of miRNA expression was performed and correlated to RV size and function assessed by echocardiography performed at or near the time of blood collection. RESULTS: MiRNA expression was profiled in the following groups: 1. normal RV size (N = 4), 2. mild/moderate RV enlargement (N = 11) and 3. severe RV enlargement (N = 5). 267 miRNAs were downregulated, and 66 were upregulated across the three groups (fold change >2.0, FDR corrected p<0.05) as RV enlargement increased and systolic function decreased. qPCR validation of a subset of these miRNAs identified increasing expression of miRNA 28-3p, 433-3p, and 371b-3p to be associated with increasing RV size and decreasing RV systolic function. Unbiased hierarchical clustering of all patients based on miRNA expression demonstrates three distinct patient clusters that largely coincide with progressive RV enlargement. Pathway analysis of dysregulated miRNAs demonstrates up and downregulation of cell cycle pathways, extracellular matrix proteins and fatty acid synthesis. HIF 1α signaling was downregulated while p53 signaling was predicted to be upregulated. CONCLUSION: Adults with TOF have a distinct miRNA profile with progressive RV enlargement and dysfunction implicating cell cycle dysregulation and upregulation in extracellular matrix and fatty acid metabolism. These data suggest peripheral blood miRNA can provide insight into the mechanisms of RV failure and can potentially be used for monitoring disease progression and to develop RV specific therapeutics to prevent RV failure in TOF.


Assuntos
MicroRNA Circulante/sangue , Regulação da Expressão Gênica , Genoma Humano , Ventrículos do Coração/fisiopatologia , Sístole , Tetralogia de Fallot/genética , Tetralogia de Fallot/fisiopatologia , Disfunção Ventricular Direita/genética , Adulto , MicroRNA Circulante/genética , Análise por Conglomerados , Regulação para Baixo/genética , Ecocardiografia , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Transdução de Sinais/genética , Tetralogia de Fallot/sangue , Tetralogia de Fallot/diagnóstico por imagem , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/fisiopatologia
13.
Clin Immunol ; 219: 108568, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32783912

RESUMO

Oral immunotherapy (OIT) can successfully desensitize allergic individuals to offending foods such as peanut. Our recent clinical trial (NCT02103270) of peanut OIT allowed us to monitor peanut-specific CD4+ T cells, using MHC-peptide Dextramers, over the course of OIT. We used a single-cell targeted RNAseq assay to analyze these cells at 0, 12, 24, 52, and 104 weeks of OIT. We found a transient increase in TGFß-producing cells at 52 weeks in those with successful desensitization, which lasted until 117 weeks. We also performed clustering and identified 5 major clusters of Dextramer+ cells, which we tracked over time. One of these clusters appeared to be anergic, while another was consistent with recently described TFH13 cells. The other 3 clusters appeared to be Th2 cells by their coordinated production of IL-4 and IL-13, but they varied in their expression of STAT signaling proteins and other markers. A cluster with high expression of STAT family members also showed a possible transient increase at week 24 in those with successful desensitization. Single cell TCRαß repertoire sequences were too diverse to track clones over time. Together with increased TGFß production, these changes may be mechanistic predictors of successful OIT that should be further investigated.


Assuntos
Alérgenos/imunologia , Arachis/imunologia , Linfócitos T CD4-Positivos/imunologia , Dessensibilização Imunológica , Hipersensibilidade a Amendoim , Administração Oral , Adolescente , Adulto , Criança , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hipersensibilidade a Amendoim/genética , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/terapia , RNA-Seq , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética , Adulto Jovem
14.
PLoS One ; 15(8): e0236805, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790689

RESUMO

OBJECTIVE: To predict spontaneous preterm birth among pregnant women in an African American population using first trimester peripheral blood maternal immune cell microRNA. STUDY DESIGN: This was a retrospective nested case-control study in pregnant patients enrolled between March 2006 and October 2016. For initial study inclusion, samples were selected that met the following criteria: 1) singleton pregnancy; 2) maternal body mass index (BMI) <30 kg/m2; 3) blood sample drawn between 6 weeks to 12 weeks 6 days gestation; 4) live born neonate with no detectable birth defects. Using these entry criteria, 486 samples were selected for study inclusion. After sample quality was confirmed, 139 term deliveries (38-42 weeks) and 18 spontaneous preterm deliveries (<35 weeks) were selected for analysis. Samples were divided into training and validation sets. Real time reverse transcription quantitative polymerase chain reaction (rt-qPCR) was performed on each sample for 45 microRNAs. MicroRNA Risk Scores were calculated on the training set and area-under-the-curve receiver-operating-characteristic (AUC-ROC) curves were derived from the validation set. RESULTS: The AUC-ROC for the validation set delivering preterm was 0.80 (95% CI: 0.69 to 0.88; p = 0.0001), sensitivity 0.89, specificity of 0.71 and a mean gestational age of 10.0 ±1.8 weeks (range: 6.6-12.9 weeks). When the validation population was divided by gestational age at the time of venipuncture into early first trimester (mean 8.4 ±1.0 weeks; range 6.6-9.7 weeks) and late first trimester (mean 11.5±0.8 weeks; range 10.0-12.9 weeks), the AUC-ROC scores for early and late first trimester were 0.79 (95% CI: 0.63 to 0.91) and 0.81 (95% CI: 0.66 to 0.92), respectively. CONCLUSION: Quantification of first trimester peripheral blood MicroRNA identifies risk of spontaneous preterm birth in samples obtained early and late first trimester of pregnancy in an African American population.


Assuntos
MicroRNAs/sangue , Nascimento Prematuro/epidemiologia , Adulto , Área Sob a Curva , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Linfócitos/citologia , Linfócitos/metabolismo , Gravidez , Primeiro Trimestre da Gravidez , Curva ROC , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
15.
Blood ; 135(11): 814-825, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31935280

RESUMO

Human invariant natural killer T (iNKT) cells are a rare innate-like lymphocyte population that recognizes glycolipids presented on CD1d. Studies in mice have shown that these cells are heterogeneous and are capable of enacting diverse functions, and the composition of iNKT cell subsets can alter disease outcomes. In contrast, far less is known about how heterogeneity in human iNKT cells relates to disease. To address this, we used a high-dimensional, data-driven approach to devise a framework for parsing human iNKT heterogeneity. Our data revealed novel and previously described iNKT cell phenotypes with distinct functions. In particular, we found 2 phenotypes of interest: (1) a population with T helper 1 function that was increased with iNKT activation characterized by HLA-II+CD161- expression, and (2) a population with enhanced cytotoxic function characterized by CD4-CD94+ expression. These populations correlate with acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation and with new onset type 1 diabetes, respectively. Our study identifies human iNKT cell phenotypes associated with human disease that could aid in the development of biomarkers or therapeutics targeting iNKT cells.


Assuntos
Autoimunidade , Biomarcadores , Imunomodulação , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Biologia Computacional/métodos , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1 , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia
16.
Nature ; 572(7770): 481-487, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391585

RESUMO

Experimental autoimmune encephalomyelitis is a model for multiple sclerosis. Here we show that induction generates successive waves of clonally expanded CD4+, CD8+ and γδ+ T cells in the blood and central nervous system, similar to gluten-challenge studies of patients with coeliac disease. We also find major expansions of CD8+ T cells in patients with multiple sclerosis. In autoimmune encephalomyelitis, we find that most expanded CD4+ T cells are specific for the inducing myelin peptide MOG35-55. By contrast, surrogate peptides derived from a yeast peptide major histocompatibility complex library of some of the clonally expanded CD8+ T cells inhibit disease by suppressing the proliferation of MOG-specific CD4+ T cells. These results suggest that the induction of autoreactive CD4+ T cells triggers an opposing mobilization of regulatory CD8+ T cells.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Adulto , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Doença Celíaca , Células Clonais/citologia , Células Clonais/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Antígenos H-2/imunologia , Humanos , Imunização , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Glicoproteína Associada a Mielina/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/citologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Adulto Jovem
17.
Aging Cell ; 18(3): e12943, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924297

RESUMO

Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age-related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age-related muscle atrophy, and GDF signaling is a proposed mechanism.


Assuntos
Envelhecimento/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Estresse Oxidativo , Animais , Células Cultivadas , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína 1 do Complexo Esclerose Tuberosa/deficiência , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo
18.
Nat Med ; 25(3): 487-495, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842675

RESUMO

Immune responses generally decline with age. However, the dynamics of this process at the individual level have not been characterized, hindering quantification of an individual's immune age. Here, we use multiple 'omics' technologies to capture population- and individual-level changes in the human immune system of 135 healthy adult individuals of different ages sampled longitudinally over a nine-year period. We observed high inter-individual variability in the rates of change of cellular frequencies that was dictated by their baseline values, allowing identification of steady-state levels toward which a cell subset converged and the ordered convergence of multiple cell subsets toward an older adult homeostasis. These data form a high-dimensional trajectory of immune aging (IMM-AGE) that describes a person's immune status better than chronological age. We show that the IMM-AGE score predicted all-cause mortality beyond well-established risk factors in the Framingham Heart Study, establishing its potential use in clinics for identification of patients at risk.


Assuntos
Citocinas/imunologia , Voluntários Saudáveis , Imunossenescência/imunologia , Linfócitos/imunologia , Mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/imunologia , Feminino , Humanos , Individualidade , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Fenótipo , Modelos de Riscos Proporcionais , Adulto Jovem
19.
Proc Natl Acad Sci U S A ; 115(52): E12323-E12332, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30541895

RESUMO

Type 1 narcolepsy (T1N) is caused by hypocretin/orexin (HCRT) neuronal loss. Association with the HLA DQB1*06:02/DQA1*01:02 (98% vs. 25%) heterodimer (DQ0602), T cell receptors (TCR) and other immune loci suggest autoimmunity but autoantigens are unknown. Onset is seasonal and associated with influenza A, notably pandemic 2009 H1N1 (pH1N1) infection and vaccination (Pandemrix). Peptides derived from HCRT and influenza A, including pH1N1, were screened for DQ0602 binding and presence of cognate DQ0602 tetramer-peptide-specific CD4+ T cells tested in 35 T1N cases and 22 DQ0602 controls. Higher reactivity to influenza pHA273-287 (pH1N1 specific), PR8 (H1N1 pre-2009 and H2N2)-specific NP17-31 and C-amidated but not native version of HCRT54-66 and HCRT86-97 (HCRTNH2) were observed in T1N. Single-cell TCR sequencing revealed sharing of CDR3ß TRBV4-2-CASSQETQGRNYGYTF in HCRTNH2 and pHA273-287-tetramers, suggesting molecular mimicry. This public CDR3ß uses TRBV4-2, a segment modulated by T1N-associated SNP rs1008599, suggesting causality. TCR-α/ß CDR3 motifs of HCRT54-66-NH2 and HCRT86-97-NH2 tetramers were extensively shared: notably public CDR3α, TRAV2-CAVETDSWGKLQF-TRAJ24, that uses TRAJ24, a chain modulated by T1N-associated SNPs rs1154155 and rs1483979. TCR-α/ß CDR3 sequences found in pHA273-287, NP17-31, and HCRTNH2 tetramer-positive CD4+ cells were also retrieved in single INF-γ-secreting CD4+ sorted cells stimulated with Pandemrix, independently confirming these results. Our results provide evidence for autoimmunity and molecular mimicry with flu antigens modulated by genetic components in the pathophysiology of T1N.


Assuntos
Narcolepsia/imunologia , Orexinas/imunologia , Orexinas/metabolismo , Adolescente , Adulto , Autoantígenos/metabolismo , Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Criança , Epitopos/imunologia , Feminino , Cadeias beta de HLA-DQ , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Humana/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Mimetismo Molecular/imunologia , Orexinas/genética , Peptídeos/genética , Receptores de Antígenos de Linfócitos T/genética , Vacinação
20.
Genome Res ; 28(4): 423-431, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567674

RESUMO

Over a decade ago, the Atacama humanoid skeleton (Ata) was discovered in the Atacama region of Chile. The Ata specimen carried a strange phenotype-6-in stature, fewer than expected ribs, elongated cranium, and accelerated bone age-leading to speculation that this was a preserved nonhuman primate, human fetus harboring genetic mutations, or even an extraterrestrial. We previously reported that it was human by DNA analysis with an estimated bone age of about 6-8 yr at the time of demise. To determine the possible genetic drivers of the observed morphology, DNA from the specimen was subjected to whole-genome sequencing using the Illumina HiSeq platform with an average 11.5× coverage of 101-bp, paired-end reads. In total, 3,356,569 single nucleotide variations (SNVs) were found as compared to the human reference genome, 518,365 insertions and deletions (indels), and 1047 structural variations (SVs) were detected. Here, we present the detailed whole-genome analysis showing that Ata is a female of human origin, likely of Chilean descent, and its genome harbors mutations in genes (COL1A1, COL2A1, KMT2D, FLNB, ATR, TRIP11, PCNT) previously linked with diseases of small stature, rib anomalies, cranial malformations, premature joint fusion, and osteochondrodysplasia (also known as skeletal dysplasia). Together, these findings provide a molecular characterization of Ata's peculiar phenotype, which likely results from multiple known and novel putative gene mutations affecting bone development and ossification.


Assuntos
DNA Antigo/análise , Genoma Humano/genética , Osteocondrodisplasias/genética , Sequenciamento Completo do Genoma , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Anotação de Sequência Molecular , Mutação/genética , Osteocondrodisplasias/fisiopatologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...